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ABSTRACT: In this paper a novel automatic learning and self tuning multivariable adaptive multiple model 
predictive control based on self organizing map neural network and optimized real time soft analyzer studied, 
characteristics are stated and implemented on a laboratory scale pH pilot plant. Generalized Predictive Control 
based on Independent Model and Dynamic Matrix Control are used as fundamental controllers. Because of 
hard noisy environment real time soft analyzer based on optimized multi layer perceptron designed for 
parameter estimation. The Kohonen’s self organizing map neural network is used for automatic model bank 
generation. A new disturbance rejection supervisor planned to improve the performance of automatic controller 
in presence of disturbances. Exhaustive implementation analyses are provided to assess the abilities of the 
presented algorithms. 

KEYWORDS: Self tuning adaptive multiple model predictive control, generalized predictive control based 
on independent model, dynamic matrix control, self-organizing map,  multi layer perceptron. 

1. INTRODUCTION 

Usually in control system design, especially in practical implementation of control methods, it must be considered 
that former information of plant is insufficient. Asymmetric data detract the control quality or even can unstabilize 
the plant.  One of the recent methods which provide pragmatic approach for uncertain and unknown systems is self 
tuning method (Bobal, et. al, 2005). In this method internal running parameters optimized by maximization or 
minimization of an objective function. Typically every self tuning system composed from four sections: expectation, 
measurement, control and action. Only the expectation section is in the access of operator or automation personnel 
and by that the operator describes how the system should behave (Budaciu, et.  al, 2012). The control section can 
be divided into two sections of explicit self tuning control and implicit self tuning control. In the explicit ones the 
model of the system is estimated and in the implicit control, parameters of controller are estimated (Kaminskas, et. 
al, 2006).   

Diverse control solutions for optimal and robust control of multivariable nonlinear processes are presented over 
past decades. Two major methods are robust control and adaptive control methods, but using this methods makes 
many restrictions and sometimes quite useless. One of the more recent approaches which can be simply 
implemented in real industrial processes is the notion of multiple models (MM) based control (Murray Smith, et. al, 
1997) In this method global control execution breaks down into small linear control problems in different operation 
conditions and appropriate pair of model-controller is designed. The considered supervisor is responsible for 
switching between pairs or combining appropriate pairs. The idea of MM is widely used in modelling of nonlinear 
systems, identification of multi level plants and control of hard nonlinear plants (Fatehi, et. al, 2008, Yanakiev, et. 
al, 2012, Camerona, et. al, 2012, Karimi, et. al, 2000). Many global controller designs with the aid of MM have been 
reported on different applications (Dougherty, et. al, 2003, Galán, et. al, 2004). 

In multiple model controllers precision of models that exist in model bank significantly affects control performance. 
The model bank should cover all possible operating conditions but there is some kind of trade off in number of 
models in model bank, increasing the number of models of the model bank improves the precision of model bank 
but can cause some problem like augmentation of computational cost and incremental numbers of switching which 
finally can deteriorate control performance (Fatehi, et. al, 2008). 

Identification of members of the model bank, the multiple modelling using self-organizing map considered. 
Automatically estimation of models parameters has been done with clustering of data acquisitioning data bank from 
the RLS method based on Kohonen’s self-organizing map (SOM) neural networks (Kohonen, et. al, 1995). After 
generation of a model, the best model which describes the process behaviour in each sample recognized and 
selected using supervisory strategy. Then the parameters of the best model are used in fundamental control 
method. According to (Karimi, et. al, 2000), the closed loop stability of the multiple model based control is 
guaranteed if each model\controller pair is individually robust to un-modelled systems dynamics and bounded 
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unmeasured disturbances. Since the Generalized Predictive Control with Independent model (GPCI) and Dynamic 
Matrix Control (DMC) strategies are inherently robust therefore the overall stability is guaranteed. 

Model predictive controller (MPC) is well known for its robustness and has a rich theoretical background. Two 
widely used MPC methods are: 1) DMC which is the most popular MPC algorithm used in the chemical process 
industries (Dougherty, et. al, 2003) and 2) Generalized Predictive Control (GPC) method which has become in both 
industry and academia as a famous process controller. In this paper, multivariable DMC and GPC algorithms 
based on the state-space model are used as a fundamental controller of desired Multiple  Model Predictive Control 
(MMPC) strategy. 

Most of the industrial processes have nonlinear dynamics and can not be modelled or even controlled by one 
mathematical model at least in their full operating range. One of the important instants of these industrial processes 
is pH which plays a central role in biotechnology, wastewater treatment, medical drugs production, food industry 
and electrochemistry. Most difficult control problem among different application of pH control is wastewater 
neutralization which is performing in continues form.  

Some characteristics of pH neutralization processes are; 1) high sensitivity for small amounts of titrating reagent 
which can result in change of pH up to one unit especially in equivalence point; 2) at each time the process static 
gain is complicated function of physical and chemical components and so titration curve is unknown for multi 
component and poor streams these problems are intensified in real-world processes because of unpredictable and 
immeasurable noises and disturbances; 3) this process is unobservable and uncontrollable because of chemical 
buffering and there is no unique relationship between required portion of titration reagent and pH; 4) reagent flow 
accuracy must be in a range of 1000:1 or more this means high there is high need for precise actuators and 
reagent metering devices. These extreme nonlinear attributes of pH process caused them to be known as test 
bench for comparison and evaluation of different control methods. 

During the last decade, modern process control applicants had investigations on improvement of product quality by 
optimizing operation conditions. In this concept, design of advanced control strategies and efficient monitoring tools 
for supervising are two wings of bird. One of the most recent methods in monitoring of process is using data-driven 
soft sensor models (Narendra, et. al, 2000, Desai, et. al. 2006). The designed soft sensor is used to produce 
estimation of process signals and extracting product information that are useful for controller design. This control 
scheme is known as inferential control (Kano, et. al, 2004). In order to extracting nonlinear model of pH process 
Multi-layer perceptron (MLP) as a paradigm of artificial neural networks (ANNs) has been used . The MLP-based 
soft-sensors are calibrated and optimized using a standard cross-validation and the Levenberg−Marquardt (LM) 
method (Nelles, et. al, 2001). 

Various approaches to cope with possible unmeasured disturbances are presented in literatures, in this paper a 
new disturbance rejection supervisor for Self Tuning Adaptive Multiple Model Predictive Control (STAMMPC) 
presented and closed loop stability is guaranteed. There are great numbers of researches on the pH control 
strategies in recent years (Garcila, et. Al, 1986, Yanakiev, et. al, 2012). Most of these strategies desiged for single 
input single output (SISO) pH processes and few researches has been done for the multivariable pH processes 
especially in experimental form.  

This paper organized as follows; in section 2 fundamentals of multivariable GPCI and DMC methods are 
presented. In section 3 a real time soft analyzer design procedure for pH pilot plant presented. Section 4 is 
allocated to generation of model bank using SOM. After that in section 5, multivariable MMPC strategy based on 
SOM and Soft Sensor presented. In section 6 the disturbance rejection supervisor is designed. Section 7 dedicated 
to specifications of pH neutralization pilot plant, overall design procedure of the STAMMPC and experimental 
results. Finally, the paper is concluded in section 8.  

2. MODEL PREDICTIVE CONTROL 

In this section two most popular MPC control strategy in industrial process control are presented. First multivariable 
GPC method using Independent Model (GPCI) presented (Rossiter, et. al, 2005) and then Multivariable DMC which 
has been discussed extensively in (Shridhar, et. al, 1998, Townsend, et. al, 1998) is summarized here.  

2.1 Multivariable GPCI 

A brief description of multivariable state space GPC algorithm based on independent model (GPCI) (Rossiter, et. 
al, 2005) for convenience of the reader presented here. Considering a state space model as following:  
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Where x̂  is the model state vector, ŷ and u  respectively denote model output and process input. , ,A B C  are 

matrixes which are defining state-space model. The model (1) can be considered as Independent Model (IM), and 
as “(1)” the real process and IM model use the same input (u ). In truth the IM operate simultaneously and parallel 

to the real process. The design procedure of a GPCI control strategy is as following. Consider the cost function: 

[ ] [ ] [ ] [ ]T T
ss ssJ y r Q y r u u R u u        (2) 

Where ,y u  is the future value vector of y and u  respectively, ssu  is the steady state input, Q  and R  are 

weighting matrixes and values of these matrix determines location of desired closed loop poles. Therefore 
changing of these matrixes would result in control strategy with different speeds and idea of this paper in MMPC 
based on GPIC control strategy. Contemplation cost function (2) zero steady-state error is guaranteed trough 
solving of inequality “(3)”: 

ˆ ˆ[ ]k ky Px Hu L y y      (3) 

In which ˆ[ ]k kL y y  is bias correction term and P , H and L are the vector of future prediction up to yn  output 

horizons can be calculated from “(4)”: 

2

1

( 1)

( 2)
ˆ ( ) (4)

  

( ) CA

                     0             

CAB                  CB          

                                       

CA       CA

y

y

n
y

n

CAy k

Y k CA
x k

Y k n

CB

B


  
  

       
  

      



2

( ) 1

( 1) 1
( )

( 1) 1     yn
u

u k

u k
D k

u k nB


     
     

      
     
     

        As seen in “(4)” the disturbance value ( )D k is used for 

correction of the difference between the current measurement of the process variable and the current value of the 
predicted process variable at the present sample time. The steady state input can be estimated as “(5)”: 
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By putting “(4)” and “(5)” in the cost function “(3)”, and solving that, the following optimal control law extracted: 
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Therefore optimal control law with respect to desired Q and R in each sample can be calculated. 

2.2  Multivariable DMC 

In DMC strategy the quadratic performance objective function for a multivariable system (Dougherty, et. al, 2003, 
Shamsaddinlou, et. al, 2013a) with S controller output and R measured process variables considered as “(7)” 
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Where ˆ
ry  is thr  measured process predicted profile; e is the vector of predicted errors over prediction horizon 

(next P sampling time); u is process input that computed by controller for M sampling time (control horizon); A is 

the multivariable dynamic matrix and formed from P unit step response coefficients of each controller\process 
variable pair. Formulation of matrix A  for two-by-two system in P step response is: 
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where 11A is step response of variable 1 which is exited with controller output 1. ijA  is given by: 
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A closed form solution of “(7)” for unconstraint systems following unconstrained multivariable DMC control law: 

1( )T T T T Tu A A A e           (10) 

T   is the P R PR controlled variable weights matrix which has leading diagonal elements as 
2 ,( 1,2, , )i i R  and off diagonal elements are zero. T   is the square diagonal matrix of dimensions MS MS  

and its leading diagonal elements are move suppression coefficient ( 2 , ( 1,2, , )i i S  ). Solving equation (7) for 

constrained DMC or equation (10) for unconstrained systems controller output vector moves is computed over the 
control horizon: 
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Similar to GPCI method in implementation of the DMC for a process, disturbance profile should be added as 
correction factor of difference between current values of process value and predicted process value in present 
sample. Only the first element of the controller output vector is implemented and the entire computation procedure 
is repeated at each sample. 

There are various tuning strategies for DMC, two of the most popular tuning methods are; 1) Smith method which 
using first order plus dead time model (FOPDT) and variance analysis affect of each parameters on proposed cost 
function evaluated and finally reached the closed formula (Iglesias, et. al, 2006); 2) Cooper method in which using 
presented FOPDT model first the value of the suppression coefficient is normalized with respect to DC gain of 
model and the after some algebraic operations the closed formula is extracted for optimal value of  ( Shridhar, et. 
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al, 1998). The goal of this paper is presentation of practical effective, easy to understand and simply implementable 
control strategy so the cooper method is chosen as tuning method. Step by step guideline for determining the 
tuning parameters for multivariable DMC are as following: 

 Approximate FOPDT models for each pair of controller output\measured process variable: 

Sample time should chosen close to 
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3. REAL TIME SOFT ANALYZER 

Designing efficient monitoring tools is the first step toward precise automation of industrial processes (Corona, et. 
al, 2012). The majority of control executions suffer from noise and many of them present poor performance or even 
are useless because of low values of signal to noise ratio. Shamsaddinlou (2013b) concluded that a type of 
proposed supervisors of MMPC could not be used because of the hard and strong noises have negative effect on 
small signals that pass from filters and used in computational part of supervisor. 

Delay is inseparable component of processes so that high number of chemical and industrial processes often can 
be characterized by delays. The systems which are stable without delays have the maximal range of delay that 
preserves stability. The estimation of effective number of time delay for process variables is the first step in real 
time identification and control. There are numerous methods of delay estimations in literatures. In the step 
response method for delay estimation (Ahmed, et. al, 2006), the efficient delay is estimated by measuring the time-
delay in the rising part of the step response of the system. Despite simplicity of this method in estimation of most 
effective delay without need to rich data of process behaviour but some of disadvantages limited use of step 
response method; 1) resolution of the results is affected by the output signal sample time 2) can be used only in 
proper high signal-to-noise ratio (SNR) step signals 3) performing this test is not possible for most closed loop 
process 4) Results are highly related to visual inspection of the operator to recognize the efficient time delay. 

Generally Lipschitz number method is used in input-output order estimation of nonlinear systems. Prospering use 
of this method extended to delay estimation in (He, et. al, 1993). Prominent advantages of this method which made 
it applicable in real implementations are its independency to the sampling time and ability to be used in low SNR 

signals. Considering model ( )f x  is Lipschitz and ( , )i ix y  as a input-output pair, the Lipschitz quotient is: 
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( ) ( )nq k is the thk  largest Lipschitz quotient among all 
n
ijq  calculated for n input variables. The Lipschitz number will 

increased considerably if delayed variable excluded from x so gives numerical inspection of the time delay.     

The soft sensor which forms measurement section of self tuning method designed based on nonlinear model with 
one MLP structure. 12 hidden neuron numbers (HNN) has been selected by semi cross validation technique in 
which model response accuracy is investigated for validation data set. During training phase mean square error 
between network error and output error iteratively adjusted. The LM algorithm selected as training algorithm which 
is well-known for its fast convergence and small residual error. The pseudo random binary sequence (PRBS) signal 
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is used in order to have full exciting dataset for identification purpose. A band-pass filter bpH  is used to filter out the 

low and high frequency components and noises from the identification data used in the soft sensor. 

4. MODEL IDENTIFICATION USING SOM NETWORK 

In non-self tuning and manual tuning control strategy there are many parameters which can be tuned and in the 
same time have direct affect on system stability and performance. In systems with variable operating conditions if 
these parameters stay in fix value, the control will be degrade or even unstable. Here automatic generation of 
process models using the RLS method based on Kohonen’s self-organizing map (SOM) neural networks for 
models with first order ARX structure presented. Indeed explicit self tuning control is duty of this section. According 
to SOM transformation of an incoming signal to lower dimension preserves topological neighbourhood. In the SOM 

network each input vector, k , has a reference vector , ,i kw , which have the best match on it. Training of SOM is 

done using best matching of reference vector and input vectors: 

,argmini k i ki w   (13) 

The best matching node and its neighbours in the certain geometric distance will learn from the activating input 
vector therefore trained SOM in the regions where more input vectors existed will have more nodes. Since 
proportional to identification data of each operation region number of required models in each region determined 
therefore to have equal attention to each operating region equal identification time is considered for each region. In 

model generation using SOM, the ARX models parameters 0 1 0 1[ , , , , , ]n na a b b  which are identified using RLS 

are considered as input vector. Therefore reference vector ,i kw shows the parameters of thi  model. Overall 

procedure of considered system identification using SOM is; 1) Plant is excited by a suitable enough persistently 
excitation (PE) input sequence. A random binary signal (RBS) pattern was used as the identification input 2) 
Process Data which are passed through High-Pass filter is given to RLS 3) RLS Data is given to SOM network 4) 
Using two dimensional SOM parameters are clustered 5) Using statistical properties of the input data SOM 
compute the relative values and model parameters of each operation region.  

5. PRINCIPALS OF ADAPTIVE MULTIPLE MODEL PREDICTIVE CONTROL 

In this paper, Adaptive Multiple Model Predictive Control (AMMPC) strategy (Dougherty, et. al, 2003) used as 
implicit self tuning controller for estimation of controller parameters. The basic idea behind the MMPC (Lupu, et. al, 
2008) is to choose the best model, describing the current dynamics of operation of the process from pre-designed 
model data based on numerical criterion, and finally selection and placing its corresponding controller in the 
feedback loop. Multiple-model based control strategy formed from 3 major parts. The first part is model bank which 
is most important part in multiple model control and affect directly on all design procedure. The second part is the 
control design strategy which is based on MPC. The last section is decision making unit which orchestrates the 
model\ controller operations in feedback loop. 

Increasing richness of the model bank results in more efficient control strategy. Each model in the bank determines 
the designer consideration about that new condition of the process but selection of number of models which are 
describing dynamics of plant and should be put in the bank to cover all different operating modes is a critical 
problem. There is some kind of trade off in arranging models in model bank; since all operating points are not 
known a priori, one solution is increasing the number of members of model bank members but this solution can 
cause some problem like intensifying computational burden, excessive numbers of switching and deterioration of 
the performance of the control system (Li, et. al, 1996). In the other hand model bank with low numbers of models 
can be imprecise, and the control system leads to a low performance for unpredicted conditions. Therefore 
determination of the model bank is a difficult, imperative and time consuming problem. There are various methods 
in separating whole operation region, such as Self-Organizing Map (SOM) neural network and gap metric methods 
(Galán, et. al, 2003). The goal of this paper is presentation of fully automatic control strategy from identification of 
process to controlling it. Therefore in order to model bank generation Kohonen’s self-organizing map (SOM) neural 
networks is used. 

In (Luo, et. al, 2006), supervisor for switching MMPC (SMMPC) designed so that gets the difference between of 

predicted outputs the models, ŷ , and real-time soft analyzer output of the process, y , which is passed through 

high pass filter,  and calculates predictive prediction error performance indexes (PPI): 
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where , , ,M   are free-design parameters,  and   are forget factors, T is chosen in some range of prediction 

horizon 0  T prediction horizon  , Z is number of model, and p p de y y  , py is predicted output in prediction 

horizon and dy is a desired output. The supervisor calculates  min i
i

J J and  argmin il J , [1, 1]i Z   at each 

sampling time. To limit hard switching speed, a hysteresis cycle gain 1h  is used. The previous model will be 

changed if B 1 AJ Jh , Subscripts ‘ A ’ and ‘ B ’ point to the current active model and the current best model 

respectively. 

Depends on type of the process and control execution expectancy free design parameters are selected. Higher 

values for , , ,      parameters and in the same time small values of 1, ,M T h result in fast global controller but 

with low performance, and they make the overall system sensitive to measurement noise. The further feature of 
this type of supervisors is that the integral characteristic of the performance index and hysteresis cycles, decrease 
the effect of measurement noise. The schematic diagram of proposed STAMMPC is presented in Fig. 1. 
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Fig . 1. Schematic diagram of STAMMPC 

6. DISTURBANCE REJECTION SUPERVISOR 

In process control the major source of excitations are disturbances because setpoints change rarely (Hägglund, et. 
al, 2000). The procedure of excitation of disturbance can be divided for two phase. In the first phase the 
disturbance changes the output and in this phase identification of models using SOM should released because 
there is not any rational relation between inputs and outputs and system works in worse case. In the second the 
controller compasses the system and there are meaningful between the input and the output data which are useful 
for identification and SOM is on in this period. So in automatic control the correct identification of process depends 
on to detect when a load disturbance occurs. From productivity point of view controllers with high rate of 
disturbance rejection have excellence to the others so estimating the disturbance is vital for performance 
preservation. 

A practical idea for detection of disturbance occurrence instance is the sign of f fu y ( Kaminskas, et. al, 2006). In 

this method considering fy  and fu  as filtered soft sensor output and input, assuming the system is positive 

definite gain, the positive sign of f fu y  demonstrates the set-point change and negative value means disturbance 

has been occurred. The supervisor should restrict the use of the tuning mode until period of time. Throughout this 
period, adjusting of the SOM model is not allowed until condition meet to the end. In the second period adaptation 

is starts when the excitation is suitable, For chattering free disturbance rejection supervisor, hysteresis factor dh is 

chosen such that if f f du y h  then sign of it will be checked. In this way the noise effects will weaken in a large 

extent. In some conditions the deviation from set-point is large, slowest model and its corresponding fastest 
controller chosen in these conditions to force the output to settle rapidly. This deviation can be calculated from 
following formula: 
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In “(4)” y  is the output of the process and dy  is the reference or desired output and L is the memory of the 

Disturbance index respectively. If 2( )DisJ t h , the fastest controller in bank located in loop. Fig. 2 shows 

disturbance rejection supervisor for AMMPC. The flowchart of novel disturbance rejection supervisor for 
STAMMPC is presented in Fig. 3.  
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Fig. 2. Disturbance Rejection supervisor of AMMPC 
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Fig. 3. Disturbance Rejection supervisor of AMMPC 

7. EXPRIMENTAL RESULTS 

In this section, a typical multivariable pH process (Hall, et. al, 1989), is described in some details and important 
properties of that is explored using system identification tests. After that the laboratory scale pH neutralization pilot 
plant presented. Finally the implementation considerations of STAMMPC method are explained and applied to the 
pH pilot plant and compared with each other. 

7.1  pH Process Description 

pH is the measurement of the activity of the hydrogen ion in a solution and mathematically pH is the negative 

logarithm of the hydrogen ion of the solution, 10log [ ]pH H   . Static chemical equation of a multivariable pH 

process is: 

4 3 2

1 1 2

1 2 1 2

( ) ( ( ))

( ( ( 2 ))) ( ) 0 (16)

a b a a a b

a w a a b a a w

H H k w H k k w w
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 

  



World Essays J. Vol., 4 (1), 57-74, 2016 
 

65 

 

 

where [ ]H   is hydrogen ion concentration, aw is acid stream flow and bw  is base stream flow inlet to the CSTR 

and relationship between them expressed as titration function, definition of other  parameters can be found in (Nie, 
et. al, 1996). Two-by-Two pH process considered here in which acid and base streams are system inputs and pH 
and level of solution in CSTR are system output. The dynamic chemical equations of the ph neutralization pilot 

plant are: 

 

      

      

10log
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 In this structure of multivariable pH process decoupling of outputs is possible if the suitable type of controllers is 
designed. The First Order Pulse Dead Time (FOPDT) linear model of pH plant at each operating points is: 

1311 12

1 1 1

2321 22

2 2 2

aa a
pH Acid Base Buffer

z b z b z b

aa a
h Acid Base Buffer

z b z b z b

  
  

  
  

     (18) 

Since each of inlet streams have identical affect on level of CSTR so 21 22 23a a a  . In the fixed level of solution, 

variations of pH extremely affects on the 11 12 13a a a   while small changes take place in 21 22 23 1 2, ,a a a b b  . 

Unlike constant level value, in fixed pH, level changes only affect on time constant of the process 1b and other 

values have small changes.  

7.2  Experimental pH Neutralization Process 

The experimental implementation of the proposed advanced control strategies are accomplished at APAC research 
group of K.N.Toosi University of Technology using a continuous pH neutralization pilot plant (Fig. 4). It formed from 
a continuous stirred tank reactor (CSTR) with a manual valve in bottom which directly affects delay and model 
parameters of the process and a motorized mixer on top to blend the component of CSTR. A pH sensor is located 
in middle of the CSTR. The level of solution measured trough a diaphragm level transmitter which is located in the 
bed of CSTR. Using two precise dosing pumps acid and base which are held in tanks pumped into the CSTR. The 
control objective is to regulation in different pH values and keeping the pH in neutrality in the presence of 
unmeasured and intentional disturbances for evaluating the abilities of controllers. A PLC S7-315 is considered for 
data acquisition and communicates with advanced controller in computer using profibus protocol. The real time soft 
analyzer, SOM neural network and advanced controller are performed by MATLAB software. The control system 
can be enhanced by correct selection of pH sensor and inlet and outlet streams locations. The operating conditions 
of components of pilot are presented in Table 1. 

Table 1. pH pilot plant Parameters setting 

Parameter Operating value 

CSTR 
Cross area 78.2 cm2 

height 25 cm 

Acid concentration 80 mlit /30 lit city tab water 

Base concentration 84 mlit /30 lit city tab water 

Acid flow rate ( )af  36 mlit/min 

Base flow rate ( )bf  48 mlit/min 

 

Titration reagents of pilot plant are aquatic solution of acid acetic which is a weak acid and sodium hydroxide a 
strong base. No buffer stream is considered in this process, so the dynamics of system is highly sensitive 
especially in operation range of [7.8,8.4]pH  . Therefore the FOPDT model of pilot plant in each operation 

condition and a model of the system according to identification test in 7 & 12ph h cm  are: 
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      (19) 

Figs. 5-A and 5-B presents the titration curve and variation of static gain of pilot plant in various operating points of 
pH solution in the batch form. It shows that the highest static gain is at region of pH= [7.8, 8.1] and is about 24. 
Highest chemical buffering which lead to the lowest static gain take place in pH= [4,4.5] and pH=[11.3,12] is 0.22. 
Thus, in the whole operating point the static gain of the process changes 109 times. 

 

Fig. 4. Laboratory scale pH Pilot Plant 

The pH pilot process is subject to various sources of unpredictable disturbances such as; 1) the city tab water 
which is used in dilution of acid and base in the tanks is not neutral and its pH value changes in the range of [7.3-

7.9]; 2) 2CO  absorption of sodium hydroxide from ambient which detract the alkaline specification of base reagent 

and cause unwanted buffering effect; 3) imperfect mixing of solution create inevitably changes in pH pilot value.  
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Fig. 5. 5-A Titration cure, 5-B Static gain. 

In addition to the immeasurable disturbances the pH pilot plant suffers from suffer from hard noises and in some 
regions imposed to the noises up to 5% of the process pH value. Main noise generating sources are Mixer, sensor 
and pumps. Globally there are two methods for decreasing the noises effects. One solution is locating the pH 
sensor after the CSTR outlet valve to measure effluent stream. In this way the noise affects of mixer and pumps 
considerably reduced but the large value of delay would be added to the system and the system dynamics 
extremely will be dependent on output valve situation. Another method is using real time soft analyzer which after 
learning of the system dynamic can generate the pH values without noise effects. In this paper real time soft 
analyzer based on multi layer perceptron is designed and implemented in the structure of automatic control 
strategy.  

7.3  Self Tuning Adaptive Multiple Model Predictive Control Implementation on pH Pilot Plant 

In this section the step by step design procedure of STAMMPC and different scenarios for evaluation of this 
advanced controller on the laboratory scale pH neutralization process is presented. Schematic of the proposed self 
tuning automatic method is shown in Fig. 6. The innovation of this paper is integration and unification of various 
automation concepts in the cast of self tuning automatic AMMPC.  

7.3.1  Soft Sensor Design 

High amplitudes of noise deteriorate the control performance and even make instablility especially in processes 
with extreme sensitivity such as pH process. Here a soft analyzer using neural networks is designed for reduction 
of noises affects in the pilot plant. Lipschitz number method is used to delay estimation. According to this method 
delay of streams with respect to plant outputs are: 

55 Sec
Acid Stream Delay for 

25 Sec

50 Sec
Base Stream Delay for 

25 Sec

pH

Level

pH

Level











  

One layer MLP is used for nonlinear modeling and estimation of output values. Based on semi cross validation 
technique 12 optimal HNN is selected. The training algorithm of LM is used for fast convergence. In order to 
generation of rich data base for identification, the PRBS signal introduced to the process. Validation of designed 
soft sensor model performance has been done trough validation figure is shown in the Fig. 7., where normal 
probability plot is visually monitored. As demonstrated the residual characteristics are similar to Gaussian noise 
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characteristics in the projection of it depicted to negative values, which means the model response error is as the 
result of the process noise and designed nonlinear model have a good estimation of desired process.  

Expectations

STAMMPC

Action

Real Time 

Soft Analyzer

Process

SOM

Measurment

Explicit Control

Implicit Control

AMMPC

 

Fig. 6. Schematic of self tuning automatic controller 

 

Fig. 7. Schematic of Self tuning automatic controller 

7.3.2  Identification Using SOM 

Two dimensional SOM is used to extract the statistical features of online identification data which are produced by 
the RLS. Plant exited by random binary signal (RBS) as identification input in various level of solution in CSTR. In 
this paper the level changes considered in the range of [10cm-20cm]. Estimated parameters of the ARX are input 
vector. Relative values of the SOM distributed across the input space and identification data in each region specify 
the number of models in that region. Except in the region pH=8, which process have high degree of sensitivity and 
its interval time is 3/2 others, in going regions equal weight is given for each region so the same interval time is 
used in each operation region. The U-Matrix (Kraaijveld, et. al, 1992) of trained SOM for level=16cm is presented in 
Fig. 8. 

 
Fig. 8. U-Matrix of network, level=16 

7.3.3  Self Tuning Controller Design 

Basic controllers of proposed STAMMPC strategy are GPCI and DMC which are inherently robust and also are the 
most popular process control method.  The robustness of each local controller guarantees the close loop stability in 
global region (Narendra, et. al, 1997). Breaking down of operation regions and using more linear controller, the 
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better adaptive controller will perform but there is no theoretical guide which show how many models should be 
considered to reach to the optimal performance (Yu, et. al, 1992). Here model bank generated using SOM and total 
35 models are selected by that to describe the whole operation range of pH pilot plant. 

An expansion of tuning of DMC method for multiple model case is built on formal tuning rule and DMC move 
calculation.  In this method each controller has its own model based predictor and optimizer. Implementation 
begins with identification of first order models by SOM and delays estimated by Lipschitz operator of soft analyzer. 

Therefore the FOPDT models for ths  controller output and thr  measured process values generated. The FOPDT 

models are used in the tuning correlations as following: 

 Smallest Sample time should chosen: 

          
( (0.1 ,0.5 ))

( 1, , ;  1, , , 1, ,35)

rs rsl rsl rslT Min T Max

r R s S l

  

  
 

 P, N, M are selected long enough to capture slowest dynamics so like single model DMC. 

 The weights considered equal to one, 2 1r    

 move suppression coefficient computed on overall control horizon 
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According to identification tests it is determined that base and acid have similar affects on pH value so weighting 

matrix arrays should be same (1,1)R diag in GPCI method. Output and control horizons respectively 

considered 35yn  , 6un  . Like DMC method the smallest sample time as a sampling time of system should be 

chosen in multiple model based on GPCI, ( (0.1 ,0.5 ))rsl rsl rslT Min T Max    , ( 1, , ;  1, , , 1, ,35)r R s S l   .  

Experimental tests show that the range of nonlinearity in the level output is negligible in other hand there is partial 
changes in poles of models in pH output. Therefore in order to simplification of identification procedure these 
parameters are considered to be constant for whole operation range: 

0.9 0.9
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a b

z z
G z

z z

 
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        (20)  

Now the only parameter that should be tuned is Q . Since the level output models are fixed, so the second array of 

Q must be firm. Using try and error proper value of 3 has obtained, 1[ ,3]Q q . Formula which is considered for 

automatic calculation of 1q  based on static gain of each model is 1

Static Gain
3

8
q   . The parameters of 

2 , ,dh h L are chosen to have same value for disturbance supervisors, 2 0.80h  , 0.07dh  , 4L  .The suggested 

supervisor parameters are shown in Table 2. 

Table 2. Controllers supervisors parameters, AMMPC +DMC+Dist Sup=AMMPC based on DMC and in the 
presence of disturbance rejection supervisor 

Parameter       M      T         1h   

AMMPC +DMC .80 .80 15 .95 12 .60 .93 .95 

AMMPC + GPCI .85 .80 12 .96 12 .60 .90 .95 

AMMPC + DMC +Dist Sup .85 .80 10 .93 8 .80 .95 .90 

AMMPC +GPCI +Dist Sup .75 .90 14 .97 8 .70 .90 .90 

STAMMPC+ DMC .85 .85 10 .95 10 .60 .95 .92 

STAMMPC + GPCI .80 .75 8 .95 10 .60 .95 .92 

STAMMPC+ DMC +Dist Sup .95 .95 10 .98 14 .80 .9 .80 

STAMMPC+ GPCI +Dist Sup .9 .90 18 .98 12 .80 .9 .80 
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In order to evaluation of the proposed method, two regulating tests with small set point and large set point changes 
and one disturbance rejection test for acid and base changes are supposed. The reference input can be given to 
the system several samples in advance. This future programming of set point of predictive control method 
compensates the delay. Fig. 9. shows the regulation of STAMMPC based on GPCI, AMMPC based on GPCI and 
single GPCI method for small changes in setpoint. Fig. 10. presents tracking of large changes in setpoint using 
STAMMPC based on DMC, AMMPC based on DMC and single DMC method. AMMPC controller is designed using 
three fixed model in three operating regions of pH=5, pH=6.5, pH=8. It can be seen from these figures that 
STAMMPC has better performance than others in control of pH channel but the level channel response is good and 
similar in all of the methods. The control strategies results are compared to each other in Table 3. In order to 
compare the results from different points of view two methods of mean square error (MSE) and mean absolute 
percentage error (MPAE (%))are used. 

 In second scenario disturbance rejection capability of controllers deliberated. Pump flow rate ( )af of acid 

stream changed from nominal value of 36 mlit/min to 15 mlit/min and then to 48 mlit/min. Disturbance rejection in 
the presence and absence of disturbance rejection supervisor for STAMMPC and conventional AMMPC are shown 
in Fig. 11. and Fig. 12. Again, STAMMPC has the best performance. It is obvious that both of the MM methods 
have most excellent performance in comparison to single DMC or GPCI control strategies. Table 3 presents the 
performance measure for all of the methods during disturbance rejection. As a result, we can say that STAMMPC 
especially in the presence of disturbance rejection supervisor improve the performance of controller significantly. 

Table 3. Numerical results of controllers in pH Channel,  * Shows presence of disturbance rejection 
supervisor  
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Single DMC 0.5134 7.6849 

Single GPCI 0.6454 9.078 

AMMPC using DMC 0.0708 3.1369 

AMMPC using GPCI 0.0835 3.6388 
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Single DMC 0.4287 11.6784 

Single GPCI 0.4227 17.0522 

AMMPC using DMC*  0.0176 0.5470 

AMMPC using GPCI* 0.0160 0.7751 

STAMMPC using 
DMC*  

0.0045 0.4000 

STAMMPC using 
GPCI*  

0.0070 0.4790 
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Fig. 9. Regulation of small changes in setpoint, STAMMPC using DMC (solid-red), AMMPC using DMC (dash-blue) 
and Single DMC (dot-black), Setpoint (dash-dot-green) 
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Fig. 10. Regulation of large changes in setpoint, STAMMPC using GPCI (solid-red), AMMPC using GPCI (dash-
blue) and Single GPCI (dot-black), Setpoint (dash-dot-green) 

 

 

 

Fig. 11. Disturbance rejection of acid stream flow rate, STAMMPC using DMC (solid-red), AMMPC using DMC 
(dash-blue) , Setpoint (dash-dot-green) 
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Fig. 12. Disturbance rejection of acid stream flow rate, STAMMPC using GPCI (solid-red), AMMPC using GPCI 
(dash-blue) , Setpoint (dash-dot-green) 

8. CONSLUSIONS 

Self tuning adaptive multiple model predictive control strategy successfully designed and implemented on a pH 
pilot plan. The presented self tuning automatic control strategy prepared a theme in which the operator only set the 
supervisor parameters and all of the rest of control executions like nonlinear modelling of plant, model bank 
generation, model identification for each region and controller design will be tuned and done automatically. Since 
all the local controllers are stable and robust in their own working point the stability and robustness of global control 
is guaranteed in whole of operation range.  

Some advantages of STAMMPC are; 1) Increasing the control quality by optimizing internal running parameters 
which resulted in outperforming the traditional AMMPC methods performance from both of the regulation and 
disturbance rejection viewpoints 2) Simple to use and understand for non occupational operators and non 
professional personnel 3) Facilitates design unification 4) Lowers the instrumentation requirements by designing an 
optimized soft sensor 5) Shortens the testing and tuning time of personnel 6)  Simply can be generalized to the 
other control methods. 
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