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Abstract  
Employing of wind turbine (WT) similar to most green power sources is grew recently because of its 
eco-friendly property. This work suggested a novel organization for integrated system with energy 
storage system (ESS) and WTs, in which, charging of battery can be done via wind turbine or 
supplied electricity from upper grid. Moreover, we can sell the saved energy of battery to power 
market in peak and high tariff times whereas regarding to electricity market tariffs, outlet power of 
wind turbine can straightly be inserted to upstream grid also it can be utilized for ESS charging. Also, 
this paper suggested a case-based stochastic frame for modeling of power market tariff and wind 
speed as uncertain parameters. Production of power yield price scenarios is made by standard 
distribution function whereas wind speed ones are produced by Weibull function. For achieving to 
optimum offering and bidding trends at all times, a mixed-integer linear programming (MILP) approach 
is employed for bidding and offering power respectively in order to purchase and sell energy from and 
to upper grid. Eventually, achieved results are provided and analyzed. 
 
Keywords: Wind turbine; Battery storage system; Renewable energy; stochastic framework; Optimal 
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Nomenclature  
Indices 
s  Index of scenario 

t  Index of time 

Parameters 

rP  The rated power of the wind turbine [MW] 

min

chP  
Minimum amount of charging power of the BSS [MW] 

max

chP  
Maximum amount of charging power of the BSS [MW] 

min

discP  
Minimum amount of discharging power of the BSS [MW] 

max

discP  
Maximum amount of discharging power of the BSS [MW] 

max

procP  
Maximum amount of procured power from the grid [MW] 

max

sellP  
Maximum amount of sold power to the grid [MW] 

max min/B BSOC SOC
 

Maximum and minimum amount of the battery’s state of charge [MWh] 

rV  The rated speed of the wind turbine [m/s] 

cut outV   The cut-out speed of the wind turbine k [m/s] 

cut inV   
The cut-in speed of the wind turbine [m/s] 

disc
 

Discharging efficiency of the BSS 

ch  Charging efficiency of the BSS 

s  Probability of the scenario s 

,t s  Power price at each time t and scenario s 

,t sV
 

The predicated wind speed at time t and scenario s [m/s] 
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Variables 

,

sell

t sP  
Sold power to the market at time t and scenario s [MW] 

,

pro

t sP  
Procured power from the market at time t and scenario s [MW] 

,

WT

t sP  
Total produced power by the wind turbine at time t and scenario s[MW] 

,

WT G

t sP 

 

Injected power from wind turbine to the grid at time t and scenario s [MW] 

,

WT B

t sP 

 
Injected power from wind turbine to the battery at time t and scenario s [MW] 

,

B G

t sP 

 
Injected power from the battery to the grid at time t and scenario s [MW] 

,

purchase

t sP
 

Purchased power from the upstream grid at time t and scenario s [MW] 

,

G B

t sP 

 
Procured power by the battery from the upstream grid at time t and scenario s [MW] 

,

B

t sSOC
 

State of charge of the battery at time t and scenario s [MWh] 

,

ch

t sU
 

Binary variable of the charging state of the BSS at time t and scenario s 

,

disc

t sU
 

Binary variable of the discharging state of the BSS at time t and scenario s 

 
 
1. Introduction 
With growth of power usage and reduction of conventional fuels [1] that are utilized for electricity 
production, employing of alternative power resources became a necessary issue [2]. Regarding 
environmental problems including pollutions and climate alteration, enforces more and more 
requirement for this alternative [3]. Respect to wide accessibility [4] as well as developed technology 
[5], wind power is taken into account as an important green power sources [6]. Since exist various 
uncertainty in programing and working of wind energy plants [8], wind energy isn’t dispatchable power 
dissimilar to conventional energy sources [7]. In order to deal with sporadic behavior as well as 
uncertainties of this energy, [9-10] offered integrated system with including WTs and power storage 
units. In restructured electricity market that gives a competitive situation [11], there is great power 
tariff oscillations [12]. Thus, obtaining optimum offering/bidding methods has high importance [13]. 
Aiming this regard, various approaches are studied in many papers. For example, [14] suggested a 
bi-level stochastic method for reaching to optimum bidding method in case of wind energy in short-
term power market, and [15] represented an optimum day-ahead bidding method for wind energy 
subject to both wind energy and  market tariff uncertainties. Authors in [16] have suggested a new 
bidding method around large scale storage devices in order to augment total revenue. Also, [17] 
presented 2 phase stochastic model for reaching to optimum bidding method of green power based 
Microgrids (MGs). Equal work is provided by [18] with synthetic robust-stochastic method. Moreover, 
[19] studied equal problem through gam-theory method for electric vehicle (EV) collectors in day-
ahead power and auxiliary service markets with variant wind power. In [20], a robust bidding model is 
proposed for arbitrage, with regarding some uncertain parameters such as power price prediction and 
wind energy prediction. Furthermore, [21] proposed information gap decision theory (IGDT) to get 
optimum bidding methods in case of day-ahead market. An inclusive stochastic decision making 
method is presented in [22] with regarding uncertainties for wind generators, and by considering 
partaking of demand response (DR) collectors. Also, [23] suggested a novel method to specify day-
ahead market bidding methods in presence of DRP for obtain optimum offering method in case of 
large-scale synthetic power electrical power company. As well, [24] discussed around hourly 
offering/bidding trends for buying/selling power for a price-maker commercial power storage facility by 
means of maximum-minimum MILP method. Authors in [25], suggested a bidding and offering 
approach in case of a synthetic energy station generator with risk-limited 2 stage stochastic, bi-level 
formulization for modeling of problem. In addition, a new strategy is proposed in [26] to make offers 
for a virtual energy system sharing which contains conventional energy system, a wind generator, an 
energy storage device and flexible loads. Bidding approach is formulized by a robust-stochastic 
strategy, with considering day-ahead market tariffs as uncertain parameter in [27]. For profit 
maximization of integrated system including WT and ESS, MILP approach is employed to get 
optimum offering/bidding trends with considering uncertainty of wind speed and prices of power 
market. 
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1.2. Novelty and contribution 
Primarily, this work represented a novel organization for integrated WT with ESS where ESS is able to 
get energy from both wind turbines and upper grid and it can give energy to power market. Besides, 
optimum bidding/offering methods are proposed in this paper in presence of uncertainty in energy 
tariff. It’s remarkable, a collection of scenarios are considered for modeling of power price 
uncertainties. 
1.3. Paper organization 
Remainder of article is constructed in following scheme: part two of paper suggested formulation of 
considered model. Part 3 represented needed data in addition to results analysis. Eventually, 
conclusion of whole paper is given in part 4. 
2. Problem formulation  
This part of paper presented a novel form of integrated wind turbine and ESS. As can be seen from 
Fig. 1, respect to prices of yield, produced electricity can be perfused into main grid or it can be save 
in storage system. Besides, charging of battery can be done from wind turbine or purchased energy 
from main grid in off-peak and low tariff times. We can sell this saved energy in high consumption 
times. Below sub-section formulized offered structure. 

 
Fig. 1. Configuration of proposed model 

2.1. Objective function 
For achieving to max revenue in suggested scheme of prior part, cost function is provided as: 

, , ,

1 1

max [ ]
s tN N

sell pro

s t s t s t s

s t

profit P P 
 

    

(1) 

 
2.2. Modeling of wind turbine 
Modeling of this unit is presented in equations (2)-(5). It’s worthy to note, operational expense of wind 
energy is assumed to be too low and mostly ignored in related works [28]. Entire produced energy of 
a WT that is reliant on wind speed can be formulized by [29]: 

P
W-G
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Battery Storage System 

 

Vt,s 

P
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 P
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(2) 

Produced energy of wind turbine can be perfused to main grid or saved in battery, which is 
represented in following equation: 

, , ,

WT WT G WT B

t s t s t sP P P    (3) 

Moreover, below formula expresses, the sold energy to upstream grid is equal to total generated 
energy of wind turbine and procured energy by storage system. 

, , ,

sell WT G B G

t s t s t sP P P    (4) 

 
The provided electrical energy from main grid, in suggested configuration, is straightly saved in 
storage battery that is formulized as follows: 

, ,

purchase G B

t s t sP P   (5) 

 
2.3. Modeling of storage battery  
Equations (6)-(10) provided mathematical model of ESS. As mentioned, it’s considered, charging of 
this unit can be through wind turbine or procured energy from main grid in off-peak times and it can 
give purchased energy to main grid in peak time intervals. Equation (6) presented state of charge 
(SOC) for battery. Also, state of charge of battery is bounded by (7). Moreover, charged and 
discharged energy of battery are respectively bounded with equations (8) and (9). Finally, equation 
(10) ensures that charging and discharging of this unit are not in a same time. 

,

, 1, , ,( )

B G

t sB B G B W B

t s t s ch t s t s

disc

P
SOC SOC P P





 

     

(6) 

min , max

B B B

t sSOC SOC SOC   (7) 

min , , ,s max ,. .ch ch WT B G B ch ch

t s t s t t sP U P P P U     (8) 

min , ,s max ,. .disc disc B G disc disc

t s t t sP U P P U   (9) 

, , 1ch disc

t s t sU U   (10) 

 
For achieving to optimum offering/bidding profiles, MILP approach is used. Also, equations (11) and 
(12) are respectively implemented in order to guarantee, offering and bidding trends are incessantly 
increasing and reducing that is usual demand in power market limitations. Furthermore, equations 
(13) and (14) are respectively presented to limit the sold and purchased electricity to and from 
upstream grid. Relation (15) expresses that selling and procuring of energy can’t be coincide. 

, ,s , ,|sell sell

t s t t s t sP P      (11) 

Pro

, , ,s ,|sell

t s t s t t sP P      (12) 

, max ,.sell sell sell

t s t sP P U  (13) 

, max ,.pro proc pro

t s t sP P U  (14) 

, , 1pro sell

t s t sU U 
 

(15) 

 
3. Proposed Approach 
Particle swarm optimization (PSO) is an evolutionary population base optimization algorithm that 
motivated by social behavior of bird flocking or fish schooling and introduced by Dr. Eberhart and Dr. 
Kennedy  for the first time in 1995 [30-33]. In general, position vector x of a particle i at the (k+1)

th
 

iteration step can be presented as: 

http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/
http://www.particleswarm.net/JK/
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1 1

i i i

k k kx x v t                                                                                                                        (16) 

In this equation, 1

i

kv   defines the velocity vector update in i
th
 particle for k

th
 step, the time step is 

presented by t , and the velocity vector for each particle can be defines as: 

1 1 1

( ) ( )
2 2

i i g i
i i k k k k
k k

p x p x
v wv c r c r

t t


 
  

 
                                                                            (17) 

In this equation, the v
i
k is the velocity vector for the k

th
 iteration step, the random vectors with 

magnitudes presented by r1 and r2 which is generated in the range of 0 and 1. The best position is 
defined by p

i
k and global best position is defined by p

g
k up to the k

th
 iteration step. In this algorithm, c1 

and c2 are based on optimization problem which named ‘trust’ parameters. The w introduce the inertia 
weight, which affects to the control in exploration ability in PSO algorithm. 
3.1. Improved version of PSO  
In this sub-section, the improvements of proposed algorithm is presented. For the first step, the 
chaotic operator is considered to improve the abilities of PSO algorithm which used previously in 
different works [34-37]. This operator is based on ergodicity, randomness, and regularity 
characteristics. This model is sensitive for initial condition as well as the parameters value. The 
chaotic operator is very strong to jump out a local optimal solution in comparison with random search 
model. Accordingly, it can solve the premature convergence which can happen in all stochastic 
search algorithms [38]. For this purpose, in this paper we used the Logistic mapping function to 
generate the chaotic variables as formulated in the following:  

1

0 0

4 (1 ), (0,1)

(.), {0.25,0.5,0.75}

k k ky y y y

y rand y

   


 
                                                                                       (18) 

where, the chaotic variables are presented by yk in the k
th
 iteration and the initial values are defined by 

y0. 
For the second step of improvements, due to discrete space of proposed optimization problem, the 
binary operator is added to the classic PSO to tackle the deficiency problems. In this model, the 
particles velocity will change by probability of change of particles location, not the rate of change of 
particle location. In this model, the velocity of particles will define the locations by 0 and 1 based on 
confident probability. Accordingly, the velocity equation for update in next iterations can be defines as 
follows:  

, , , ,
, ,

1 1 1 2 2

,

, 3

( ) ( )

1      r  < sigmond(v )

0     other

i d i d g d i d
i d i d k k k k
k k

i d

i d k

k

p x p x
v v c r c r

t t

x



 
  

 


 


                                                                       (19) 

In this relationship, the best position of the i
th
 particle is defined by 

,i d

kp ; the best position of entire 

particle swarm is shown by 
,g d

kp , and the velocity and location of i
th
 particle in k

th
 iteration is 

presented with 
,i d

kv  and 
,i d

kx , respectively. The learning factor of algorithm are defined by c1 and c2 

and the free parameters which generated randomly between 0 and 1, are resented with r1, r2 and r3. 
The sigmoid function of algorithm is presented in the following to transfer the velocity of particles to 
probability domains between [0,1]: 

,

,

,

,

,

2
1    0

1
( )

2
1     0

1

i d
k

i d
k

i d

kv
i d

k

i d

kv

v
e

sigmoid v

v
e






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 
 
  
 

                                                                                  (20) 

For the next improvement, we added a sensitivity for initial values and ergodicity of chaos in proposed 
algorithm. This improvement helps the algorithm in global search diversity. In this model, once a 
particle is near to the fixed particles, it can search just a limit area. So, we will evaluate the distance of 
arbitrary particles and the best one to choose the best searching process. This evaluation can be 
modeled as: 

2( )i i bestD X X                                                                                                                     (21) 
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where, the proposed distance is presented by Di; the location of i
th
 particle as well as the best one can 

be presented by Xi and Xbest, respectively. In this model, the particles which are overlapped will 
divided by chaos search algorithm. In this model, the best particles will remain and other ones 
mapped to the chaotic space through (17). So, the new generated particles can replaced with 
previous particles.  
For the last improvement, an additional operator is added to the proposed algorithm to tackle the fast 
convergence based on false Pareto front. In this work, a new operator of mutation is utilized to 
improve the algorithm exploration abilities. This operator is based on nonlinear function which 
enhanced the control of each particles probability and range of mutation. The proposed function is 
updated in each iteration based on the following formula: 

( 10 / )0.5 0.01t T

mP e                                                                                                             (22) 

where, the maximum iteration is shown by T. By this equation, the exponential rate will be decrease 
through iteration growth. So, if: P > rand (generated between 0 and 1), then the mutation operator will 
be run for the first pick randomly K elements from this particle, so we can initialize again in search 
space. The  
K elements can be calculated as: 

max{1, }mK D P                                                                                                                (23) 

This operator can improve the exploration behavior and the probability range of proposed operator will 
decrease by improving the iteration. The pseudo-code of this operator is presented in Fig. 2.  

Input: the swarms 
Output: the swarm after mutation 

For i=1 to Ns 
       If Pm> r1    %r1 generated between 0 and 1 by chaotic model% 
              Evaluate the K by (22) 
              S={I1,I2,…,Ik}    % randomly generate the K between [1,D] and save in set of S% 
              For k=1:K 
                  Pi,Ik = initialize (Pi,Ik)   % reinitialize the Ik-th element of the particle % 
              End For 
       End If 
End For 

Figure 2. The pseudo-code of the mutation operator 
4. Numerical simulation 
This part of paper applied the suggested method on a test system and achieved results are shown in 
this section. 
4.1. Data 
Uncertainties of electricity market tariffs are modeled through a collection of 10 cases that are get with 
standard distribution function. Table 1 listed the data of these ten cases. Also, modeling of wind 
speed uncertainty is made via a collection of scenarios that are get by Weibull distribution function. 
Information of wind speed scenarios are also provided in Table 2. In addition, Tables 3 and 4 are 
represented respectively the needed data for wind turbine and battery storage device. Also, the 
graphical representation of these tables are presented in Fig. 3 and 4, respectively.  
 
Table 1: Information of market price scenarios 

Time 

Scenarios 

1 2 3 4 5 6 7 8 9 10 

1 31.15 32.41 25.04 32.55 29.47 24.57 26.7 28.81 33.63 33.89 

2 22.75 30.47 30.01 25.27 27.65 22.48 24.16 28.41 26.89 29.4 

3 23.42 18.04 24.85 25.98 23.48 24.05 23.26 21.03 22.65 19.41 

4 21.65 16.29 19.07 16.67 17.51 22.41 20.81 18.64 23.31 15.69 

5 23.07 22.71 25.27 25.52 21.24 23.4 22.35 23.63 24.07 24.41 

6 24.79 27.77 27.58 23.71 23.16 26.45 30.58 24.54 26.29 23.56 

7 30.5 26.48 28.5 30.03 32.15 33.69 28.05 24.43 24.57 25.74 

8 27.05 22.74 26.78 22.65 28.28 23.46 21.47 21.95 24.46 23.52 

9 19.62 22.57 20.93 20.73 23.51 19.22 21.22 21.2 19.02 20.07 
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10 31.87 31.19 37.76 40.46 43.33 33.07 38.14 37.16 28.64 35.82 

11 34.19 41.42 36.16 38.42 34.24 39.16 35.59 39.72 40.1 40.8 

12 42.57 36.92 39.79 49.26 38.51 47.35 43.56 55.12 36.75 42.48 

13 41.91 57 35.12 51.91 52.66 53.73 41.25 46.86 44.91 52.34 

14 37.44 43.51 34.5 35.6 33.91 33.74 42.62 38.93 38.63 33.9 

15 33.49 31.12 28.91 30.24 29.33 25.55 27.87 26.42 27.25 27.87 

16 17.71 14.83 20.72 21.32 18.08 18.08 17.29 20.69 17.46 15.69 

17 28.69 25.75 24.57 25.85 22.88 23.4 30.93 31.24 26.99 22.1 

18 43.06 44.72 50.95 36.16 38.29 41.93 48.37 49.43 48.28 45.87 

19 54.18 50.59 57.15 48.68 56.21 48.57 51.68 55.22 57.71 45.77 

20 77.68 72.76 67.3 66.42 66.61 64.04 67.68 67.65 73.71 73.14 

21 57.57 53.7 60.5 55.35 52.69 63.69 61.46 55.6 56.66 56.13 

22 46.23 47.75 50.08 46.05 55.14 45.41 45.97 44.93 46 49.04 

23 38.39 46.46 39.72 36.11 45.38 48.48 39.23 34.75 37.15 38.91 

24 34.3 31.23 34.37 34.83 30.2 28.72 31.01 31.23 32.21 32.95 
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Fig. 3. Graphical representation of Table 1: (a) bar chart, (b) mesh plot 

 
 
 

Table 2: Information of market price scenarios 
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1 2 3 4 5 6 7 8 9 10 

1 3.64 3.83 2.67 3.86 3.37 2.59 2.93 3.27 4.03 4.07 

2 2.87 4.2 4.11 3.25 3.68 2.74 2.49 3.26 2.99 3.44 

3 7.82 5.75 8.3 8.73 7.79 8 7.28 6.44 7.05 5.84 

4 11.32 8.31 9.85 8.52 8.99 11.7 10.51 9.31 11.9 7.67 

5 11.46 11.26 12.62 12.75 10.49 11.63 10.71 11.39 11.62 11.8 

6 7.4 8.4 8.34 7.03 6.84 7.96 8.85 6.8 7.39 6.47 

7 10.21 8.74 9.48 10.03 10.81 11.38 8.82 7.49 7.55 7.97 

8 9.46 7.8 9.35 7.76 9.93 8.07 6.84 7.02 7.99 7.62 

9 8.08 9.42 8.68 8.58 9.85 7.89 8.39 8.38 7.39 7.86 

10 11.48 11.22 13.78 14.83 15.95 11.95 13.92 13.54 10.22 13.02 

11 11.11 13.71 11.82 12.63 11.13 12.9 11.62 13.1 13.24 13.49 

12 14.67 12.57 13.64 17.16 13.16 16.45 15.04 19.34 12.51 14.64 

13 13.89 19.32 11.45 17.49 17.76 18.15 13.65 15.67 14.97 17.65 

14 18.18 21.27 16.68 17.24 16.38 16.29 20.82 18.94 18.79 16.37 

15 25.2 23.39 21.69 22.71 22.02 19.12 20.9 19.79 20.42 20.9 

16 23.78 20.01 27.73 28.51 24.27 24.26 23.23 27.69 23.46 21.13 

17 28.05 25.16 24.01 25.26 22.36 22.87 30.24 30.54 26.38 21.59 

18 15.92 16.57 19 13.23 14.06 15.48 18 18.37 17.92 16.98 

19 13.71 12.73 14.52 12.21 14.26 12.18 13.03 13.94 14.62 11.36 

20 14.02 13.05 11.99 11.81 11.85 11.35 12.06 12 13.18 13.07 

21 8.42 7.76 8.91 7.56 7.11 8.96 8.59 7.6 7.78 7.69 

22 3.97 4.15 4.42 3.44 4.49 3.36 3.43 3.31 3.43 3.78 

23 2.64 3.49 2.78 1.89 2.86 3.18 2.21 1.74 1.99 2.18 

24 2.15 1.83 2.15 1.68 1.2 1.05 1.29 1.31 1.41 1.49 

 
Table 3: Coefficients of the WT 

cut inV   ratedV  cut outV   ratedP
 

5 14 25 2.05 

 
Table 4: Coefficients of the BSS 

min

BSOC  
max

BSOC  min

chP  max

chP  min

discP  min

discP  

2 10 1 5 1 5 
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Fig. 4. Graphical representation of Table 2: (a) bar chart, (b) mesh plot 

4.2. Results 
For reaching to optimum offering/bidding trends represented problem by (1)-(15), solving of this 
problem is made by means of CPLEX solver [39] with GAMS software [40]. As discussed, for 
modeling of market tariff uncertainty, various cased are regarded. The obtained results depict, 
applying of suggested method leaded to $1,23 for entire revenue. Fig. 5 illustrated 
charging/discharging battery at all times in case of 3 various methods. It’s remarkable, positive and 
minor number are respectively signify to charged and discharged electricity. As shown in this figure, 
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clearly, the discharged electrical energy of case six is a little more compared to other 2 cases. 
Besides, in 9-th case, battery storage system is charged higher than remain cases. 
 

 
Fig. 5. Charged and discharged power of the BSS for different scenarios 

 
Swapped electricity with main grid at different time intervals for various cases is depicted in Fig. 6. 
Provided/given electricity from/to main grid is expressed by positive/negative numbers. It’s worthy to 
note, given energy to upstream grid is sum of wind turbine outlet power and discharged energy of 
battery. According to this figure, given energy to upstream grin in case five is higher compared to 2 
other cases whereas provided electricity from upstream grid of case two is more than other scenarios. 
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Fig. 6. Exchanged power with the upstream for different scenarios 

 
This paper is aimed to get optimum offering/bidding trends. Fig. 7 to Fig. 9 show optimized bidding 
profiles for 3 and 7-8 time steps. Growth of electricity market tariff results in mitigation of bidding 
energy to power market. Fig. 4 depicts optimum bidding curves at 3-th time step in which max bidding 
energy is 4.66MW once price is 17.63$/MW. Fig. 8 shows optimum bidding profile at hour seven. In 
this time, once market price is more the 25.12$/MW, bidding energy to yield is 0. 

 
Fig. 7. The optimal bidding curve for 3-th hour 
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Fig. 8. The optimal bidding curve for 7-th hour 

 
Also, optimum bidding curve at 8-th time step is illustrated by Fig. 9. The max bidding electricity is 
occurred once market tariff is 20.68$/MW whereas min bidding energy is happened once price is 
25.04$/MW. Max and min bidding electricity are respectively 4.76MW and 4.27MW. 

 
Fig. 9. The optimal bidding curve for 8-th hour 

 
Besides, optimized offering curves are presented by Fig. 10 to Fig. 12 for 2, 10 and 18 time intervals. 
As estimated, offering trends are ascending that is requirement of market. Fig. 10 depicts offering 
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trends at hour 2, in which offering electricity to market is 0 once market tariff is lower that 23.28$/MW. 
Furthermore, offering profile at 10-th time step is illustrated in Fig. 11. According to this figure, max 
and min offering energies that are respectively 4.65MW and 1.43MW, are occurred once market tariffs 
are 43.14 and 36.01$/MW. Finally, optimum offering trend is shown in Fig. 12 at 18-th hour. Respect 
to this figure, max and min offering energies are respectively 2.05MW and 1.39MW that are recorded 
when electricity market tariffs are equal to 59.14 and 47.25$ per MW. 
 

 
Fig. 10. The optimal offering curve for 2-th hour 

 

 
Fig. 11. The optimal offering curve for 10-th hour 
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Fig. 12. The optimal offering curve for 18-th hour 

 
 

5. Conclusion 
This study suggested a novel strategy for integration of wind turbine with battery storage facility in 
grid-connected operation, in which, ESS is able to charge with both wind turbine and supplied energy 
from market in off-peak times. Through giving the saved energy of battery in expensive time intervals, 
integrated plant can get revenue. Besides, regarding to electricity market tariffs, outlet power of wind 
turbine can be straightly perfused to upstream grid or it can be stored in battery. Moreover, a 
collection of 10 scenarios are considered for modeling of power market price uncertainty using 
stochastic approach, while Weibull distribution function is employed in order to model wind speed as 
uncertain parameter. Achieved results confirmed, entire revenue of suggested method is $1,23. At 
last, through mixed-integer linear programing strategy, optimum offering/bidding curves are achieved 
at all times. 
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