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Abstract 
This paper presents a passive islanding detection method based on means of a neuro-fuzzy approach for 
wind turbines. Several methods based on passive and active detection scheme have been proposed. 
While passive schemes have a large non detection zone (NDZ), concern has been raised on active 
method due to its degrading power quality effect. Reliably detecting this condition is regarded by many as 
an ongoing challenge as existing methods are not entirely satisfactory. The proposed method is based on 
voltage measurements and processing of the hybrid intelligent system called ANFIS -the adaptive neuro 
fuzzy inference system- for islanding detection. This new method based on passive methods will help to 
reduce the NDZ without any perturbation that deteriorates the output power quality opposite active 
methods. This method detects the islanding conditions with the analysis of these signals. The studies 
reported in this paper are based on an experimental system (wind turbine simulator). The results showed 
that the ANFIS-based algorithm detects islanding situation accurate than other islanding detection 
algorithms. Moreover, for those regions which are in need of a better visualization, the proposed approach 
would serve as an efficient aid such that the mains power disconnection can be better distinguished. 

Keywords: Distributed generation- islanding detection- non detection zone- adaptive neuro fuzzy inference 
system,-fuzzy subtractive clustering 
 
 

I.     INTRODUCTION    
The increase of distributed resources in the electric utility systems is indicated due to recent and ongoing 
technological, social, economical and environmental aspects. Distributed Generation (DG) units have 
become more competitive against the conventional centralised system by successfully integrating 
newgeneration technologies and power electronics. Hence, it attracts many customers from industrial, 
commercial, and residential sectors. DGs generally refer to Distributed Energy Resources (DERs), 
including photovoltaic, fuel cells, micro turbines, and small wind turbines, and additional equipment [1]. 
The total global installed wind capacity at the end of 2010 was 430 TWh annually, which is 2.5% of the 
total global demand. Based on the current growth rates, World Wide Energy Association (WWEA) predicts 
that, in 2015, a global capacity of 600 GW is possible. By the end of the year 2020, at least 1500 GW can 
be expected to be installed globally [2]. However, connecting wind turbines to distribution networks 
produces some problems, such as islanding. 
Islanding when occurred, that DG and its local load become electrically isolated from the utility grid [3]. 
However the wind turbine produces electrical energy and supplies the local load. Islanding creates many 
problems in system and cause the existing standards do not permit DGs to be utilized in islanding mode 
[4]. Some of these reasons are: 
 Create safety hazard for personals  
 Power quality problems for customers load 
 overload condition of wind turbine generator  
 Out of phase recloser connection [5,6]. 
Thus, islanding conditions should be detected and interrupted. This application should be done in less than 
2 seconds [5]. 
Originally, the methods of islanding detections are divided to two methods. a) Communication methods. b) 
Local methods. Local methods have been classified as active and passive techniques [4]. Active 
techniques are based on directly interact with the on-going power system operation, such as impedance 
measurement [7], frequency shift, active frequency drift [7], sandia frequency shift [7,9], sandia voltage 
shift [7,9], phase shift, current injection [8], negative sequence current injection method [10]. Passive 
techniques are based on measurement and information at the local site, such as under/over frequency [7], 
under/over voltage [7], voltage phase jump, voltage unbalanced and total harmonic distortion [2], rate of 
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change of frequency [11], vector surge [11, 13], phase displacement monitoring [13], rate of change of 
generator power output [7], comparison of rate of change of frequency [11]. 
In this paper, a new method based on Discrete Wavelet Transform (DWT) has been proposed for 
islanding detection of wind turbines. The proposed technique, which is suitable for asynchronous DGs, is 
explained in Section 3.  Section 4 explains the simulation and experimentally test system used to verify the 
effectiveness of the proposed technique. Section 5 explores the effectiveness of the proposed technique 
applied on simulation and experimentally test system, Section 6 concludes the paper. The simulation test 
systems were simulated in MATLAB/ SIMULINK using SimPowerSystemBlockSet. Simulation and 
experimentally results show that the proposed islanding detection technique works well in discriminating 
between switching and islanding conditions. 

II.     ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS):    
 
Artificial intelligence, including neural network, fuzzy logic inference [27-28], has been used to solve many 
nonlinear classification problems. The main advantages of a fuzzy logic system (FLS) are the capability to 
express nonlinear input/output relationships by a set of qualitative if-then rules. The main advantage of an 
ANN, on the other hand, is the inherent learning capability, which enables the networks to adaptively 
improve its performance. The key properties of neuro-fuzzy network are the accurate learning and 
adaptive capabilities of the neural networks, together with the generalization and fast learning capabilities 
of fuzzy logic systems. The ANFIS is a very powerful approach for modeling nonlinear and complex 
systems with less input and output training data with quicker learning and high precision. ANFIS is an 
adaptive network which permits the usage of neural network topology together with fuzzy logic. It not only 
includes the characteristics of both methods, but also eliminates some disadvantages of their lonely-used 
case. Basically a fuzzy inference system is composed of five functional blocks (Fig.1). 

 
Fig.1 fuzzy inference system 

Operation of ANFIS looks like feed-forward back propagation network. Consequent parameters are 
calculated forward while premise parameters are calculated backward. There are two learning methods in 
neural section of the system: Hybrid learning method and back-propagation learning method. In fuzzy 
section, only zero or first order Sugeno inference system or Tsukamoto inference system can be used. 
The ANFIS approach learns the rules and membership functions from data.  The objective of ANFIS is to 
adjust the parameters of a fuzzy system by applying a learning procedure using input-output training data. 
The basic structure of the type of fuzzy inference system is a model that maps input characteristics to input 
membership functions, input membership function to rules, rules to a set of output characteristics, output 
characteristics to output membership functions, and the output  membership function to a single-valued 
output or a decision associated with  the output.  
This section introduces the basics of ANFIS network architecture and its hybrid learning rule. The Sugeno 
fuzzy model was proposed by Takagi, Sugeno, and Kang in an effort to formalize a systematic approach to 
generating fuzzy rules from an input-output dataset. A typical fuzzy in a Sugeno fuzzy model has the 
format: 

If x is A and y is B then z = f (x, y) 
Where A and B are fuzzy sets in the antecedent; z=f(x,y) is a crisp function in the consequent. Usually f(x, 
y) is a polynomial in the input variable x and y, but it can be any other functions that can appropriately 
describe the output of the system within the fuzzy region specified by the antecedent of the rule. When f(x, 
y) is a first-order polynomial, this first order sugeno fuzzy model is proposed in sugeno (1998).When f is a 
constant, then the zero order Sugeno fuzzy model, which is functionally equivalent to a radial basis 
function network under certain minor constraints. The architecture of ANFIS with two inputs, one output 
and two rules is given in Fig. 2.  In this connected structure, the input and output nodes represent the 
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training values and the predicted values, respectively, and in the hidden layers, there are nodes functioning 
as membership functions (MFs) and rules. This architecture has the benefit that it eliminates the 
disadvantage of a normal feed forward multilayer network, where it is difficult for an observer to 
understand or modify the network. Here x, y are inputs, F  is output, the circles represent fixed node 
functions and squares represent adaptive node functions. 

 
Fig. 2 ANFIS architecture 

Consider a first order Sugeno fuzzy inference system which contains two rules: 
Rule 1: If X is Al and Y is B1, then f1 =P1x+q1y+r1, 
Rule 2: If X is A2 and Y is B 2 then f2 =P2x+q2y+r2, 

Where, P1, P2, q1, q2, r1, r2 are linear parameters and A1, A2, B1, B2 are nonlinear parameter.  ANFIS is 
an implementation of a fuzzy logic inference system with the architecture of a five-layer feed-forward 
network. The system architecture consists of five layers, namely, fuzzy layer, product layer, normalized 
layer, de-fuzzy layer and total output layer. With this way ANFIS uses the advantages of learning capability 
of neural networks and inference mechanism similar to human brain provided by fuzzy logic. The operation 

of each layer is as follows: Here the output node i in layer l is denoted as l
iO . 

Layer 1 is fuzzification layer. Every node i in this layer is an adaptive node with node function 
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Here { ia , ib , ic } is the parameter set of the membership function. The center and width of the membership 

function is varied by adjusting ic  and ia . The parameter ib  is used to control the slopes at the crossover 

points. Fig. 3 shows the physical meaning of each parameter in a generalized bell function. The 
parameters in this layer are called premise parameters. This layer forms the antecedents of the fuzzy rules 
(IF part). 

 
Fig.3. Generalized bell function 

Layer 2 is rules layer. Every node in this layer is a fixed node and contains one fuzzy rule. The output is the 
product of all incoming signals and represents the firing strength of each rule. 
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Layer 3 is normalization layer. Every node in this layer is a fixed node and thi  node calculates the ratio of 

thi  rule’s firing strength to the sum of all rules’ firing strengths. Outputs of this layer are called normalized 

firing strengths computed as 
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Layer 4 is consequent layer. Every node in this layer is an adaptive node and computes the values of rule 
consequent (THEN part) as 
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Here iw is the output of Layer 3 and the parameters { ip , iq , ir ) are called as consequent parameters. 

Layer 5 is summation layer and consists of single fixed node which calculates the overall output as the 
summation of all incoming signals as 
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III.     ROPOSED DETECTION ALGORITHM    
In this study, we propose to use a hybrid intelligent system called ANFIS for islanding detection. We 
combine the ability of a neural network (NN) to learn with fuzzy logic (FL) to reason in order to form a 
hybrid intelligent system called ANFIS.  
ANFIS training algorithm can be efficiently used to build fuzzy rules from correct input-output numerical 
data pairs. The main motivations for such an investigation are: i) the ANFIS is a well known and successful 
solution; ii) it can be used directly on the data recorded in the learning stage, and so it can be further 
considered for a real-time implementation; iii) it stands as a classical algorithm, with trustful 
implementation as the one included in MATLAB. More specifically, in the forward pass of the hybrid 
learning algorithm, node outputs go forward until layer 4 and the consequent parameters are identified by 
the least-squares method. In the backward pass, the error signals propagate backwards and the premise 
parameters are updated by gradient descent. We don’t necessarily have a predetermined model structure 
based on characteristics of variables in ours system. There will be some modeling situations in which we 
can’t just look at the data and discern what the membership functions should look like. Rather than 
choosing the parameters associated with a given membership function arbitrarily, these parameters could 
be chosen so as to tailor the membership functions to the input-output data in order to account for these 
types of  variations in the data values. These techniques provide a method for the fuzzy modeling 
procedure to learn information about a data set, in order to compute the membership function parameters 
that best allow the associated fuzzy inference system to track the given input/output data. Using a given 
input/output data set, the ANFIS constructs a fuzzy inference system (FIS) whose membership function 
parameters are tuned (adjusted) using either a back propagation algorithm. This allows our fuzzy systems 
to learn from the data they are modeling. 
The proposed approach is based on the passive method of islanding detection considering the data 
clustering approach. In addition this method includes building a simplified and robust fuzzy classifier 
initialized by the subtractive clustering and makes a fuzzy interface system (FIS) for islanding detection. As 
a result of the increasing complexity and dimensionality of classification problems, it becomes necessary 
to deal with structural issues of the identification of classifier systems. Important aspects are the selection 
of the relevant features and determination of effective initial partition of the input domain. The purpose of 
clustering is to identify natural groupings of data to produce a concise representation of a system’s 
behavior. Subtractive clustering is a fast, one-pass algorithm for estimating the number of clusters and the 
cluster centers in a set of data. 
 In this paper an ANFIS models which takes voltage signal as inputs and islanding condition as output. 
Firstly, voltage data taken from the distributed generation for provide a dataset. The next step, construct a 
fuzzy inference system (FIS) that could best predict the islanding condition or normal condition. ANFIS 
training can use alternative algorithms to reduce the error of the training. A combination of the gradient 
descent algorithm and a least squares algorithm is used for an effective search for the optimal parameters. 
The main benefit of such a hybrid approach is that it converges much faster, since it reduces the search 
space dimensions of the back propagation method used in neural networks. ANFIS was trained with the 
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first half epochs and the next half epochs were used for validation. The root mean squared error (RMSE) 
from each of the validating epochs was calculated and averaged to give the RMSE per patient. Averages 
of RMSE per patient were calculated for all patients to give the average RMSE. Thus before training a 
fuzzy inference system, the data set has been divided into training set and test sets. The training set is 
used to train a fuzzy mode, while the test set is used to determine when training should be terminated to 
prevent over fitting.  After training, for verify the model (FIS) we calculate the root mean square error of the 
system generated by the training data that it is equal 0.1068. To validate the generalize ability of the 
model; we apply test data to the FIS that it is equal 0.018. Fig.4 shows the membership function obtained 
only from dataset for all conditional of islanding and normal operation without any setting of threshold for 
islanding detection parameter. In this paper we can overcome the problem of setting the detection 
thresholds for islanding detection. 
 

 
Fig.4 membership function 

 
ANFIS models which takes voltage as inputs and islanding condition as output. If the islanding is detected, 
the output ANFIS is higher than 0.6. Conversely, if the islanding is not detected, the output ANFIS is 
around 0 or less than 0.5. The result obtained to indicate that ANFIS is effective method for islanding 
detection. 

IV.     CASE STUDY    
Fig. 5 shows a schematic diagram of a wind turbine unit. The DG unit is a wind turbine induction generator, 
and a capacitor bank is used to improve the power factor. The local load is a three-phase parallel RL 
before the circuit breaker (CB), in which “r” denotes the series resistance inductance and Vf indicates the 
voltage drop across the parallel load. The parallel RL is conventionally adopted as the local load for the 
evaluation of islanding detection methods when the load inductance is tuned to the system frequency. This 
system, as shown in Fig. 5, is connected to a Point of Common Coupling (PCC) with a step-up 
transformer. To obtain the experimental results, a wind turbine simulator, as shown in Fig. 6, was 
implemented. Fig. 7 and Fig. 8 show the implemented simulator system. The implemented system 
parameters are given in Table 1. The parallel load inductance is considered infinite. Thus, the parallel load 
is only a resistance, and hence the unit of “L” is “inf”. Fig. 9 shows the motor saturation curve. In the grid-
connected condition, the switches SW1 and SW2 are closed. The islanding condition occurs when SW2 is 
open. 
The voltage and frequency of DG should have admissible values in both grid-connected and islanded 
modes. In the grid-connected mode, the voltage magnitude and frequency of the local load at the PCC are 
regulated by the grid. 
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Fig.5 .Single line diagram of study system 

 
 

 
Fig. 6. Single line diagram of implementation system in order to islanding condition detection 

 

Table 1. Parameters of the implemented system 

Parameters Value 

 
 

Induction Motors 

Sn 2KVA 

Vn 400V 

F 50HZ 

PF 0.78Lag 

Rs, Rr 2.3541Ω 

Lr,Ls 0.01678H 

Lm 0.275H 

Local Load R 180 Ω 

L Inf 

Capacitor C 36.75μF 
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Fig. 7. Implementation system in order to islanding condition detection 

 
 

Fig. 8. Implementation system in order to islanding condition detection 

 
Fig. 9. Motor and generator saturation curves 

 

V.     IMPLEMENTATION RESULTS    
  
In this study, the simulation is conducted in four scenarios to illustrate the effectiveness of the proposed 
method. 

A. Match power condition 
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In this test, the active and reactive power of local load is 0.8 KW and 0Kvar respectively. The value of 
capacitor is 36.0μF, the distributed generator is assumed to separate from the grid, where the event is 
assumed to take place at 2.2 s. In Fig. 10a and b, the waveforms of phase voltage and frequency of DGs 
are individually depicted.  Immediately following this loss of utility, proposed method relay fails to detect 
islanding condition. Fig.11 shows the output of proposed method algorithm result. ANFIS output is rich to 
above “0.5” value which leads to islanding detection. So the ANFIS based protection algorithm produced 
the trip signal and sends to distributed generation (DG). 

 
Fig.10. match power condition: (a) phase voltage; (b) frequency 

 
Fig.11 ANFIS output for match power conditional 

B. Mismatch power condition 
At first, the amount of capacitor bank is lesser than nominal condition. The active power set to 0.66 KW 
and reactive power set to 0.1Kvar respectively. The distributed generator is assumed to separate from the 
grid, where the event is assumed to take place at 1.15 s. In Fig. 12a and b, the waveforms of phase 
voltage and frequency of DGs are individually depicted.  Immediately following this loss of utility, frequency 
is increase and voltage is drop. Fig.13 shows the ANFIS output that is rich to higher than “0.5” value which 
leads to islanding detection. So the ANFIS based protection algorithm produced the trip signal and sends 
to distributed generation (DG).  
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Fig.12 Mismatch power condition: (a) three phase voltage; (b) frequency 

 
Fig.13 ANFIS output for Mismatch power condition 

At the next test, the amount of capacitor bank is higher than nominal condition and set to 40 μF. The active 
power set to 0.66 KW and reactive power set to 0.1Kvar respectively. After islanding event at 2.6 s, figures 
14a and b and c that show waveforms of instantaneous phase voltage, RMS phase voltage and frequency 
of DGs respectively. As can be seen, frequency is drop and voltage is increase. Fig.15 shows the ANFIS 
output that is rich to higher than “0.5” value which leads to islanding detection. So the ANFIS based 
protection algorithm produced the trip signal and sends to distributed generation (DG). 
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Fig.14 Mismatch power condition: (a) phase voltage; (b) RMS voltage value (c) frequency  

 
Fig.15 ANFIS output for Mismatch power condition (2)  

 
 
 

C. Motor starting condition 
The starting of induction motors may cause a malfunction of the islanding detection algorithm. To study the 
reliability of the proposed algorithm, at t=1.15 s an induction motor with P=1KW and Q=1.1Kvar is starting 
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and connected to the Point of Common Coupling (PCC). In Fig. 16a and b shows the waveforms of phase 
voltage and frequency of DGs respectively. Fig.17 shows the ANFIS results at this condition. The value of 
neural network output is not reach to threshold value. Therefore, the proposed method does not send a trip 
signal to distributed generation and works in a reliable mode. 

 
Fig.16 Motor starting condition: (a) three phase voltage; (b) frequency 

 
Fig.17 ANFIS output for motor starting 

 

D. Capacitor bank switching condition 
Large capacitor bank switching in distribution power systems initiates disturbances. These disturbances 
are propagated in the distribution system and have some effects on the proposed method. To test the 
proposed algorithm, at t=2 s a large 30 μF capacitor bank was switched at the PCC in the non-islanding 
case. In Fig. 18a and b, the waveforms of phase voltage and frequency of DGs are individually depicted. 
Fig.19 shows the neural network response. The value of neural network output is not reach to threshold 
value too. Therefore, the system continue to working without any mistaken trip. 
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Fig.18 Capacitor bank switching condition: (a) three phase voltage; (b) frequency 

 
Fig.19 ANFIS output for motor starting 

VI.     CONCLUTION    
A new technique for islanding detection of distributed generation is proposed based on adaptive neuro 
fuzzy inference system. Following the increased number and enlarged size of distributed generating units 
installed in a modern power system, the protection against islanding has become extremely challenging 
nowadays. Islanding detection is also important as islanding operation of distributed system is seen a 
viable option in the future to improve the reliability and quality of the supply.  The islanding situation needs 
to be prevented with distributed generation due to safety reasons and to maintain quality of power supplied 
to the customers. By case studies with numerical simulations, the proposed approach was verified with 
feasibility, flexibility and robustness. 
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