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This paper monitor the deposition of Citrobacter in high porous medium in 

saline environment, the study investigate the behaviour of the contaminant 
in saline environment, the application of deterministic model developed 

simulation values that express the behaviour and effect from high porous 

medium, such shallow phreatic bed were observed to experiences 
fluctuation in soil porosity thus reflecting on the rate of concentration. The 

simulation developed locations that the concentration generated fluctuation 

to the depth were it was in significant in the formation, this was observed 
to be in an area were Citrobacter experiences degradation due to lack of 

microelement for growth. Moreso its deposition in shallow Phreatic zone 

has evaluated the rate of transport with respect to time and depth from the 
study carried out, it was observed to be predominantly influenced by high 

porosity in the formation, the influences of alluvium deposit in these 

condition could not influences the aquiferous zone by uniformity of the 
Phreatic deposited  strata. Formation characteristics stated above were 

found significant in the migration of Citrobacter from surface to phreatic 

zone. The models were simulated and it produced theoretical values 
compared with other measured results, both parameters developed a 

favuorable fits validating the model. 

  © 2021 WEJ Publisher All rights reserved. 
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Introduction 

The effectiveness microbes to be convert ass absorbed soil carbon into microbial biomass have been called the 

microbial growth efficiency (Y), carbon-use efficiency, or substrate-use effectiveness. This physiological features of the 

microbial biomass powerfully pressure overall soil unrefined carbon (SOC) budgets and carbon sequestration in ecosystems 

(3). Since: nutrient ratios in microbial biomass differ over comparatively narrow ranges Y also contributes to regulation of 

nitrogen (and other nutrient) mineralization and immobilization in soils (3). Measurements of microbial growth efficiency in 

soil span a surprisingly wide range, from 0.14 to 0.77 (4, 6, 5). Despite the high variability of this integrative trait and its 

importance in influencing organic matter turnover and nutrient availability, we have limited understanding of how 

environmental variables influence growth efficiency (15, 3; and 5). The size and structure of the soil microbial population is a 

role of net primary making, plant carbon (C) portion, rhizosphere activity, and litter substrate superiority (11,10,7,and 9), and 

is controlled through complex communications with plants (12,13and 14). Changes in atmospheric CO2 concentration and 

nitrogen (N) deposition rates alter both the quality and quantity of above- and belowground plant litter inputs to soil (2, 8,14,), 

which in turn can affect belowground microbial society arrangement and function (4,15,and17). Considering the mechanisms 

controlling belowground C processes is useful in predicting future changes in soil C stores in response to climate and land-use 

change (17). Altering root and coarse woody debris (CWD) inputs to soil is one method to examine the feedbacks between 

plants, microbes, and soil organic matter (SOM) dynamics [18, 19]. In a Douglas-fir forest, 7 y of CWD additions and litter 

and root exclusion have produced significant changes in annual soil CO2 efflux (16, 11]. 
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Governing equation  
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Nomenclature  

C = Citrobacter concentration   [ML-3] 

 = Saline concentration           [ML-3] 

K = Permeability                        [LT-1] 

U = Velocity                               [LT-1] 
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Z = Depth                                   [L] 
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Auxiliary equation becomes  

0
2

22

2

2 =++ CMCM
K


                                                           (20) 

Applying quadratic expression, we have 
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Assuming this discriminant is complex, therefore equation (23) and (24) can be written as: 

  ZMSinFtMCosFZTC 21 21, +=                                                            (25) 

But if But if 
v

d
t = and tvZ =  

The expressed model can be written as  

  tVMSinF
v

d
MCosFZTC += 21 21,                                                          (26) 

Material and Method 

Column experiments were also performed using soil samples from several borehole locations, the soil samples were 

collected at intervals of three metres each (3m). A Citrobacter   solute was introduced at the top of the column and effluents 

from the lower end of the column were collected and analyzed for Citrobacter. The effluents at the down of the column were 

collected at different depth and days for thorough analysis. This experiment was performed to compare with the theoretical 

values for model validation.  

 

Results and Discussion  

 Results and discussion are presented in tables including graphical representation of Citrobacter concentration. 
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Table 4.1: Theoretical values of Citrobacter at Different Depth 
Depth [m] Theoretical Values Conc. 

3 1.45E-04 
6 2.89E-04 

9 4.26E-04 

12 5.77E-04 
15 7.23E-04 

18 8.65E-04 

21 9.88E-04 
24 1.24E-04 

27 1.34E-05 

30 1.52E-05 

 

Table 4.2: Theoretical values of Citrobacter at Different Time 
Time per day Theoretical Values Conc. 

10 1.45E-04 

20 2.89E-04 
30 4.26E-04 

40 5.77E-04 

50 7.23E-04 
60 8.65E-04 

70 9.88E-04 

80 1.24E-04 
90 1.34E-05 

100 1.52E-05 

                                    
Table: 4.3 Theoretical and Measured values of Citrobacter Concentration at Different depth 

Depth [m] Theoretical Values Conc. Measured Values 

3 1.45E-04 1.62E-04 
6 2.89E-04 3.22E-04 

9 4.26E-04 4.72E-04 

12 5.77E-04 6.22E-04 
15 7.23E-04 7.57E-04 

18 8.65E-04 9.32E-04 

21 9.88E-04 1.25E-05 
24 1.24E-05 1.32E-05 

27 1.34E-05 1.39E-06 

30 1.52E-05 1.48E-06 

 

Table: 4.4 Theoretical and Measured values of Citrobacter Concentration at Different Time 
Time per day Theoretical Values Conc. Measured Values 

10 1.45E-04 1.32E-04 

20 2.89E-04 2.22E-04 
30 4.26E-04 3.22E-04 

40 5.77E-04 4.12E-04 

50 7.23E-04 5.32E-04 
60 8.65E-04 6.32E-04 

70 9.88E-04 7.42E-04 

80 1.24E-05 8.12E-04 
90 1.34E-05 9.12E-05 

100 1.52E-05 1.20E-06 

 
Table 4.5: Theoretical vales of Citrobacter at Different Depth 

Depth [m] Theoretical Values Conc. 

3 8.39E-03 
6 0.023 

9 0.031 

12 0.043 
15 0.051 

18 0.066 

21 0.078 
24 0.084 

27 0.091 

30 0.098 

 
 

 



World Essays J. Vol., 9 (4), 77-86, 2021 

 

81 

 

Table 4.6: Theoretical vales of Citrobacter at Different Depth 
Time per day Theoretical Values Conc. 

10 8.39E-03 
20 0.023 

30 0.031 

40 0.043 
50 0.051 

60 0.066 

70 0.078 
80 0.084 

90 0.091 

100 0.098 

 

Table: 4.7 Theoretical and Measured values of Citrobacter Concentration at Different Time 
Depth [m] Theoretical Values Conc. Measured Values Conc. 

3 8.39E-03 7.00E-03 

6 0.023 0.019 
9 0.031 0.024 

12 0.043 0.051 

15 0.051 0.066 
18 0.066 0.072 

21 0.078 0.081 

24 0.084 0.087 
27 0.091 0.094 

30 0.098 0.099 

                    
Table: 4.8 Theoretical and Measured values of Citrobacter Concentration at Different Time 

Time per day Theoretical Values Conc. Measured Values Conc. 

10 8.39E-03 7.88E-03 
20 0.016 1.85E-02 

30 0.025 2.33E-02 

40 0.033 3.17E-02 
50 0.041 3.94E-02 

60 0.05 5.11E-02 

70 0.058 5.74E-02 
80 0.067 6.67E-02 

90 0.076 7.57E-02 

100 0.083 7.96E-02 

 

 
Figure 4.1: Theoretical values of Citrobacter at Different Depth 

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

0 5 10 15 20 25 30 35

P
re

d
ic

ti
ve

 V
al

u
e

s 
fo

r 
C

it
ro

b
ac

te
r 

C
o

n
c 

[M
g/

-L
]-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

.

Depth [m]

Theoretical Values Conc.



World Essays J. Vol., 9 (4), 77-86, 2021 

 

82 

 

 
Figure 4.2: Theoretical values of Citrobacter at Different Time 

 

 
Figure: 4.3 Theoretical and Measured values of Citrobacter Concentration at Different Depth 

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

0 20 40 60 80 100 120

P
re

d
ic

ti
ve

 V
al

u
e

s 
fo

r 
C

it
ro

b
ac

te
r 

C
o

n
c 

[M
g/

L]
.

Time [T]

Theoretical Values Conc.

-2.00E-04

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

0 5 10 15 20 25 30 35

P
re

d
ic

ti
ve

 a
n

d
 M

e
as

u
re

d
 V

al
u

e
s 

fo
r 

C
it

ro
b

ac
te

r 
C

o
n

c 
[M

g/
L]

Depth [M]

Theoretical Values Conc.

Measured Values



World Essays J. Vol., 9 (4), 77-86, 2021 

 

83 

 

 
Figure: 4.4 Theoretical and Measured values of Citrobacter Concentration at Different Time 

 

 
Figure 4.5: Theoretical values of Citrobacter at Different Depth 
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Figure 4.6: Theoretical vales of Citrobacter at Different Time 

 

 
Figure: 4.7 Theoretical and Measured values of Citrobacter Concentration at Different Depth 
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Figure: 4.8 Theoretical and Measured values of Citrobacter Concentration at Different Time 

 

 The expression from the graphical representation between figures one to four shows the transport level including the 

behaviour of the Citrobacter in the study location. The concentration developed are in exponential phase from three to twenty 

one metres at the period of seventy days and suddenly observed rapid degradation down to the lowest at thirty metres at the 

period of hundred days. The comparison between the theoretical and measure for depth and time of transport developed 

faviourable fits expressing the validation of the system. These implies that   the condition of the microbial transport process 

experiences  due the fluctuation  deposition of microelement  in these formations, this were observed to  reflect on the growth  

or concentration rate at different strata of the formation,  the deposition of the Citrobacter  in the study area were found from 

the developed model to be influenced by predominant deposition of one of the formation characteristics, the formation 

parameters pressure the deposition of the Citrobacter transport and concentration  under the influences porosity, this were 

discovered to be  the predominant in the study location.  While figure five to eight express exponential phase of deposition in 

the formation with slight vacillation base on porosity variation between intercedes of the formation.   The behaviour of 

Citrobacter  definitely depend on the deposition of the structural setting of the formation, the pressure of  deltaic condition has 

also expressed it influences on the transport and depositional level of the Citrobacter, the predictive and measured values of the 

stated figures express faviourable fits,  the migration of Citrobacter  has been express from the developed model through the 

simulation values, the study in this condition were able to express insignificant effect of saline deposition on the migration of 

the Citrobacter  at coastal environments, the study has developed a base line that will be applied in monitoring and evaluation 

of  Citrobacter thus determined the pressure from porous medium variations effect   including its behaviour in coastal location.  

 

Conclusion    

 Citrobacter were found in saline environments, the deposition of this microbes were assessed to monitor its migration 

process to determined the possibility effect of saline to phreatic beds, monitoring this contaminant transport were done through 

the application of mathematical modeling techniques, the developed modeling generated theoretical values that express the 

fluctuation and exponential transport process of Citrobacter in saline environment, the study observed the condition of it 

migration process and found that saline could not influences the  behaviour of the Citrobacter,  the study were able to express 

the rate of migration and other influences that pressured the behaviour of the microbes in the study area. Such condition were 

able to influences the concentration process of Citrobacter in coastal environments, there is no doubt that the process were 

necessary to confirm it rates of concentration thus observed whether saline deposition inhibited it migration process, 
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area the concentration were observed signification compared to WHO standard on microbial deposition on phreatic beds, 

experts will ensure that this approach will be applied proactively to eradicate Citrobacter pollution in the study environment. 
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